FORTRAN - Correct values are calculated in simple precision, but erroneous solutions in double precision? -


i have following code, regarding newton's method calculating zeros in multivariable vectorial functions:

   program newton_method_r_n_r_n_1_numeric  use inverse_matrices  implicit none integer  :: i, j                            !index real (kind = 8) :: x(0:501,3)               !vectors in newton method real (kind = 8) :: a(3,3)                   !jacobi's matrix each vector integer , parameter :: n = 3                !dimension of jacobi's matriz real (kind = 8) :: inv(3,3)                 !inverse jacobi's matrix real (kind = 8), parameter :: eps = 1d-8    !near-zero value real (kind = 8) :: det                      !determinant  x(0,:) = (/2.d0,2.d0,2.d0/)  = 0, 500     = h(x(i,:))     call lu_factorization (n, a)     call determinant (n, a, det)     if (abs(det)<eps)         exit     end if     call inverse_matrix (n, a, inv)     x(i + 1,:) = x(i,:) - matmul(inv,g(x(i,:))) end  write(*,*) ' 0 of function is: ', x(i,:)     read(*,*)    contains  function g(t)     implicit none     real (kind = 8), intent(in) :: t(3)         real (kind = 8) :: g(3)         g(1) = t(1)**2 - t(2)**2 + 1.0d0         g(2) = 2.0d0*t(1)*t(2)         g(3) = t(3)**2 - 2.0d0 end function g  function g_1(t_1)     implicit none     real (kind = 8), intent(in) :: t_1(3)         real (kind = 8) :: g_1         g_1 = t_1(1)**2 - t_1(2)**2 + 1.0d0 end function g_1  function g_2(t_2)     implicit none     real (kind = 8), intent(in) :: t_2(3)         real (kind = 8) :: g_2         g_2 = (2.0d0)*t_2(1)*t_2(2) end function g_2  function g_3(t_3)     implicit none     real (kind = 8), intent(in) :: t_3(3)         real (kind = 8) :: g_3         g_3 = t_3(3)**2 - 2.0d0 end function g_3  function h(q)     implicit none     real (kind = 8), intent(in) :: q(3)         real (kind = 8) :: h(3,3)         real (kind = 8), parameter :: dx = 1d-4          real (kind = 8) :: a(3)         real (kind = 8) :: b(3)         real (kind = 8) :: c(3)           a(1) = dx         a(2) = 0.d0         a(3) = 0.d0         b(1) = 0.d0         b(2) = dx         b(3) = 0.d0         c(1) = 0.d0         c(2) = 0.d0         c(3) = dx          h(1,1) = ((g_1(q + a)) - g_1(q)) / dx         h(1,2) = ((g_1(q + b)) - g_1(q)) / dx         h(1,3) = ((g_1(q + c)) - g_1(q)) / dx         h(2,1) = ((g_2(q + a)) - g_2(q)) / dx         h(2,2) = ((g_2(q + b)) - g_2(q)) / dx         h(2,3) = ((g_2(q + c)) - g_2(q)) / dx         h(3,1) = ((g_3(q + a)) - g_3(q)) / dx         h(3,2) = ((g_3(q + b)) - g_3(q)) / dx         h(3,3) = ((g_3(q + c)) - g_3(q)) / dx  end function h  end program 

in simple precision solutions correctly displayed. curious thing when make program write vectors each step, final solution comes correctly, eliminating write statement loop, final solution comes not number. double precision seems messing results, in simple precision works properly, , cannot find error might be. perhaps writing functions wrong in double precision?

any appreciated.


this module, if helpful:

module matrices_inversas_2      implicit none  contains          subroutine factorizacion_lu (n, a)      implicit none     integer, intent(in) :: n            !dimensiÓn del sistema (matriz de coef.)     real (kind = 8), intent(inout) :: a(n,n)    !matriz de coeficientes del sistema          integer :: i, j, k              !Índices         real (kind = 8) :: v(n), w(n)               !vectores auxiliares          !factorizaciÓn lu         k = 1, n              !columnas             = 1, (k - 1)                 v(i) = a(k,i)             end             j = k, n                 = 1, (k - 1)                     w(i) = a(i,j)                 end                 a(k,j) = a(k,j) - dot_product(v,w)             end              !filas             = 1, (k - 1)                 w(i) = a(i,k)             end             = (k + 1), n                 j = 1, (k - 1)                     v(j) = a(i,j)                 end                 a(i,k) = (a(i,k) - dot_product(v,w)) / a(k,k)             end          end      end subroutine factorizacion_lu      subroutine sustitucion_directa (n, a, b, c, v)      implicit none     integer, intent(in) :: n                !dimensiÓn del sistema       real (kind = 8), intent(inout) :: a(n,n)        !matrices del sistema     real (kind = 8), intent (in) :: b(n)            !matriz de tÉrminos independientes     real (kind = 8), intent(out) :: c(n)            !matriz de incÓgnitas     real (kind = 8), intent(out) :: v(n)            !vector auxiliar          integer :: i, j                     !Índices en las matrices         real (kind = 8) :: s                            !sumatorio          = 1, n             v(i) = a(i,i)             a(i,i) = 1.d0         end          !sustituciÓn directa         c(1) = b(1) / a(1,1)             = 2, n                 s = 0.d0                 j = 1, (i - 1)                     s = s + a(i,j)*c(j)                 end                 c(i) = (b(i) - s) / a(i,i)             end      end subroutine sustitucion_directa      subroutine sustitucion_regresiva (n, a, c, x, v)      implicit none     integer, intent(in) :: n            !dimensiÓn del sistema     real (kind = 8), intent(inout) :: a(n,n)    !matriz de coeficientes     real (kind = 8), intent(in) :: c(n)         !matriz de tÉrminos independientes     real (kind = 8), intent(out) :: x(n)        !matriz de incÓgnitas     real (kind = 8), intent(in) :: v(n)         !vector auxiliar          integer :: i,j                  !Índices en las matrices         real (kind = 8) :: s                        !sumatorio en sustituciÓn regresiva          = 1, n             a(i,i) = v(i)         end          !sustitcuiÓn regresiva         x(n) = c(n) / a(n,n)         = (n - 1), 1, -1             s = 0.d0             j = (i + 1), n                 s = s + a(i,j) * x(j)             end             x(i) = (c(i) - s) / a(i,i)         end      end subroutine sustitucion_regresiva      subroutine matriz_inversa (n, a, inv)      implicit none     integer, intent(in) :: n            !dimensiÓn del sistema     real (kind = 8), intent(inout) :: a(n,n)    !matriz de la que hallar la inversa     real (kind = 8), intent(out) :: inv(n,n)    !inversa          integer :: i, j                 !Índices         real (kind = 8) :: b(n)                     !matriz de tÉrminos independientes         real (kind = 8) :: c(n)                     !matriz intermedia de incÓgnitas         real (kind = 8) :: x(n)                     !matriz de incÓgnitas         real (kind = 8) :: v(n)                     !vector auxiliar          = 1, n             b = 0.d0             b(i) = 1.d0             call sustitucion_directa (n, a, b, c, v)             call sustitucion_regresiva (n, a, c, x, v)             j = 1, n                 inv(j,i) = x(j)             end         end      end subroutine matriz_inversa      subroutine determinante (n, a, det)      integer, intent(in) :: n        !dimensiÓn del sistema     real (kind = 8), intent(inout) :: a(n,n)!matriz de entrada     real(kind = 8), intent(out) :: det      !valor del determinante          integer ::                            !Índice          det = 1.d0         = 1, n             det = det * a(i,i)         end      end subroutine determinante      end module 

you have provided module matrices_inversas_2 containing apparently-spanish named procedures, program uses module called inverse_matrices, still not have fully-compilable set of code work with.

you have not specified consider 'correctly displayed'.

i made obvious changes module code in order procedure names match , compiled using nagfor -kind=byte -u -c=all -c=undefined -gline. running, get

mod.f90: [nag fortran compiler normal termination] test.f90: warning: test.f90, line 93: unused local variable j [nag fortran compiler normal termination, 1 warning] loading... runtime error: mod.f90, line 27: reference undefined variable v program terminated fatal error mod.f90, line 27: error occurred in matrices_inversas_2:factorizacion_lu test.f90, line 18: called newton_method_r_n_r_n_1_numeric abort (core dumped) 

you attempting dot_product of 2 size-n arrays (v , w) seems code first (k-1) elements initialized. if replace both of dot_product calls dot_product(v(1:(k-1)),w(1:(k-1))) program runs completion , displays

a 0 of function is:    0.0000000000000000   1.0000000000000000   1.4142135623730951 

Comments

Popular posts from this blog

How to run C# code using mono without Xamarin in Android? -

c# - SharpSsh Command Execution -

python - Specify path of savefig with pylab or matplotlib -